Semantic segmentation is a computer-vision task that involves assigning a semantic label to each pixel in an image. In Real-Time Semantic Segmentation, the goal is to perform this labeling quickly and accurately in real time, allowing for the segmentation results to be used for tasks such as object recognition, scene understanding, and autonomous navigation.
The precise segmentation of geological linear features, spanning from planetary lineaments to terrestrial fractures, demands capturing long-range dependencies across complex anisotropic topologies. Although State Space Models (SSMs) offer near-linear computational complexity, their dependence on rigid, axis-aligned scanning trajectories induces a fundamental topological mismatch with curvilinear targets, resulting in fragmented context and feature erosion. To bridge this gap, we propose Fluxamba, a lightweight architecture that introduces a topology-aware feature rectification framework. Central to our design is the Structural Flux Block (SFB), which orchestrates an anisotropic information flux by integrating an Anisotropic Structural Gate (ASG) with a Prior-Modulated Flow (PMF). This mechanism decouples feature orientation from spatial location, dynamically gating context aggregation along the target's intrinsic geometry rather than rigid paths. Furthermore, to mitigate serialization-induced noise in low-contrast environments, we incorporate a Hierarchical Spatial Regulator (HSR) for multi-scale semantic alignment and a High-Fidelity Focus Unit (HFFU) to explicitly maximize the signal-to-noise ratio of faint features. Extensive experiments on diverse geological benchmarks (LROC-Lineament, LineaMapper, and GeoCrack) demonstrate that Fluxamba establishes a new state-of-the-art. Notably, on the challenging LROC-Lineament dataset, it achieves an F1-score of 89.22% and mIoU of 89.87%. Achieving a real-time inference speed of over 24 FPS with only 3.4M parameters and 6.3G FLOPs, Fluxamba reduces computational costs by up to two orders of magnitude compared to heavy-weight baselines, thereby establishing a new Pareto frontier between segmentation fidelity and onboard deployment feasibility.
We present the first unified framework for rate-distortion-optimized compression and segmentation of 3D Gaussian Splatting (3DGS). While 3DGS has proven effective for both real-time rendering and semantic scene understanding, prior works have largely treated these tasks independently, leaving their joint consideration unexplored. Inspired by recent advances in rate-distortion-optimized 3DGS compression, this work integrates semantic learning into the compression pipeline to support decoder-side applications--such as scene editing and manipulation--that extend beyond traditional scene reconstruction and view synthesis. Our scheme features a lightweight implicit neural representation-based hyperprior, enabling efficient entropy coding of both color and semantic attributes while avoiding costly grid-based hyperprior as seen in many prior works. To facilitate compression and segmentation, we further develop compression-guided segmentation learning, consisting of quantization-aware training to enhance feature separability and a quality-aware weighting mechanism to suppress unreliable Gaussian primitives. Extensive experiments on the LERF and 3D-OVS datasets demonstrate that our approach significantly reduces transmission cost while preserving high rendering quality and strong segmentation performance.
Semantic reconstruction of agricultural scenes plays a vital role in tasks such as phenotyping and yield estimation. However, traditional approaches that rely on manual scanning or fixed camera setups remain a major bottleneck in this process. In this work, we propose an active 3D reconstruction framework for horticultural environments using a mobile manipulator. The proposed system integrates the classical Octomap representation with 3D Gaussian Splatting to enable accurate and efficient target-aware mapping. While a low-resolution Octomap provides probabilistic occupancy information for informative viewpoint selection and collision-free planning, 3D Gaussian Splatting leverages geometric, photometric, and semantic information to optimize a set of 3D Gaussians for high-fidelity scene reconstruction. We further introduce simple yet effective strategies to enhance robustness against segmentation noise and reduce memory consumption. Simulation experiments demonstrate that our method outperforms purely occupancy-based approaches in both runtime efficiency and reconstruction accuracy, enabling precise fruit counting and volume estimation. Compared to a 0.01m-resolution Octomap, our approach achieves an improvement of 6.6% in fruit-level F1 score under noise-free conditions, and up to 28.6% under segmentation noise. Additionally, it achieves a 50% reduction in runtime, highlighting its potential for scalable, real-time semantic reconstruction in agricultural robotics.
As autonomous driving moves toward full scene understanding, 3D semantic occupancy prediction has emerged as a crucial perception task, offering voxel-level semantics beyond traditional detection and segmentation paradigms. However, such a refined representation for scene understanding incurs prohibitive computation and memory overhead, posing a major barrier to practical real-time deployment. To address this, we propose SUG-Occ, an explicit Semantics and Uncertainty Guided Sparse Learning Enabled 3D Occupancy Prediction Framework, which exploits the inherent sparsity of 3D scenes to reduce redundant computation while maintaining geometric and semantic completeness. Specifically, we first utilize semantic and uncertainty priors to suppress projections from free space during view transformation while employing an explicit unsigned distance encoding to enhance geometric consistency, producing a structurally consistent sparse 3D representation. Secondly, we design an cascade sparse completion module via hyper cross sparse convolution and generative upsampling to enable efficiently coarse-to-fine reasoning. Finally, we devise an object contextual representation (OCR) based mask decoder that aggregates global semantic context from sparse features and refines voxel-wise predictions via lightweight query-context interactions, avoiding expensive attention operations over volumetric features. Extensive experiments on SemanticKITTI benchmark demonstrate that the proposed approach outperforms the baselines, achieving a 7.34/% improvement in accuracy and a 57.8\% gain in efficiency.
DepthCropSeg++: a foundation model for crop segmentation, capable of segmenting different crop species under open in-field environment. Crop segmentation is a fundamental task for modern agriculture, which closely relates to many downstream tasks such as plant phenotyping, density estimation, and weed control. In the era of foundation models, a number of generic large language and vision models have been developed. These models have demonstrated remarkable real world generalization due to significant model capacity and largescale datasets. However, current crop segmentation models mostly learn from limited data due to expensive pixel-level labelling cost, often performing well only under specific crop types or controlled environment. In this work, we follow the vein of our previous work DepthCropSeg, an almost unsupervised approach to crop segmentation, to scale up a cross-species and crossscene crop segmentation dataset, with 28,406 images across 30+ species and 15 environmental conditions. We also build upon a state-of-the-art semantic segmentation architecture ViT-Adapter architecture, enhance it with dynamic upsampling for improved detail awareness, and train the model with a two-stage selftraining pipeline. To systematically validate model performance, we conduct comprehensive experiments to justify the effectiveness and generalization capabilities across multiple crop datasets. Results demonstrate that DepthCropSeg++ achieves 93.11% mIoU on a comprehensive testing set, outperforming both supervised baselines and general-purpose vision foundation models like Segmentation Anything Model (SAM) by significant margins (+0.36% and +48.57% respectively). The model particularly excels in challenging scenarios including night-time environment (86.90% mIoU), high-density canopies (90.09% mIoU), and unseen crop varieties (90.09% mIoU), indicating a new state of the art for crop segmentation.
In complex environments, autonomous robot navigation and environmental perception pose higher requirements for SLAM technology. This paper presents a novel method for semantically enhancing 3D point cloud maps with thermal information. By first performing pixel-level fusion of visible and infrared images, the system projects real-time LiDAR point clouds onto this fused image stream. It then segments heat source features in the thermal channel to instantly identify high temperature targets and applies this temperature information as a semantic layer on the final 3D map. This approach generates maps that not only have accurate geometry but also possess a critical semantic understanding of the environment, making it highly valuable for specific applications like rapid disaster assessment and industrial preventive maintenance.
Reliable traversable area segmentation in unstructured environments is critical for planning and decision-making in autonomous driving. However, existing data-driven approaches often suffer from degraded segmentation performance in out-of-distribution (OOD) scenarios, consequently impairing downstream driving tasks. To address this issue, we propose OT-Drive, an Optimal Transport--driven multi-modal fusion framework. The proposed method formulates RGB and surface normal fusion as a distribution transport problem. Specifically, we design a novel Scene Anchor Generator (SAG) to decompose scene information into the joint distribution of weather, time-of-day, and road type, thereby constructing semantic anchors that can generalize to unseen scenarios. Subsequently, we design an innovative Optimal Transport-based multi-modal fusion module (OT Fusion) to transport RGB and surface normal features onto the manifold defined by the semantic anchors, enabling robust traversable area segmentation under OOD scenarios. Experimental results demonstrate that our method achieves 95.16% mIoU on ORFD OOD scenarios, outperforming prior methods by 6.35%, and 89.79% mIoU on cross-dataset transfer tasks, surpassing baselines by 13.99%.These results indicate that the proposed model can attain strong OOD generalization with only limited training data, substantially enhancing its practicality and efficiency for real-world deployment.
Few-shot semantic segmentation of time-series remote sensing images remains a critical challenge, particularly in regions where labeled data is scarce or costly to obtain. While state-of-the-art models perform well under full supervision, their performance degrades significantly under limited labeling, limiting their real-world applicability. In this work, we propose SAM-Aug, a new annotation-efficient framework that leverages the geometry-aware segmentation capability of the Segment Anything Model (SAM) to improve few-shot land cover mapping. Our approach constructs cloud-free composite images from temporal sequences and applies SAM in a fully unsupervised manner to generate geometry-aware mask priors. These priors are then integrated into training through a proposed loss function called RegionSmoothLoss, which enforces prediction consistency within each SAM-derived region across temporal frames, effectively regularizing the model to respect semantically coherent structures. Extensive experiments on the PASTIS-R benchmark under a 5 percent labeled setting demonstrate the effectiveness and robustness of SAM-Aug. Averaged over three random seeds (42, 2025, 4090), our method achieves a mean test mIoU of 36.21 percent, outperforming the state-of-the-art baseline by +2.33 percentage points, a relative improvement of 6.89 percent. Notably, on the most favorable split (seed=42), SAM-Aug reaches a test mIoU of 40.28 percent, representing an 11.2 percent relative gain with no additional labeled data. The consistent improvement across all seeds confirms the generalization power of leveraging foundation model priors under annotation scarcity. Our results highlight that vision models like SAM can serve as useful regularizers in few-shot remote sensing learning, offering a scalable and plug-and-play solution for land cover monitoring without requiring manual annotations or model fine-tuning.
We present a real-time tracking SLAM system that unifies efficient camera tracking with photorealistic feature-enriched mapping using 3D Gaussian Splatting (3DGS). Our main contribution is integrating dense feature rasterization into the novel-view synthesis, aligned with a visual foundation model. This yields strong semantics, going beyond basic RGB-D input, aiding both tracking and mapping accuracy. Unlike previous semantic SLAM approaches (which embed pre-defined class labels) FeatureSLAM enables entirely new downstream tasks via free-viewpoint, open-set segmentation. Across standard benchmarks, our method achieves real-time tracking, on par with state-of-the-art systems while improving tracking stability and map fidelity without prohibitive compute. Quantitatively, we obtain 9\% lower pose error and 8\% higher mapping accuracy compared to recent fixed-set SLAM baselines. Our results confirm that real-time feature-embedded SLAM, is not only valuable for enabling new downstream applications. It also improves the performance of the underlying tracking and mapping subsystems, providing semantic and language masking results that are on-par with offline 3DGS models, alongside state-of-the-art tracking, depth and RGB rendering.
In domestic environments, robots require a comprehensive understanding of their surroundings to interact effectively and intuitively with untrained humans. In this paper, we propose DVEFormer - an efficient RGB-D Transformer-based approach that predicts dense text-aligned visual embeddings (DVE) via knowledge distillation. Instead of directly performing classical semantic segmentation with fixed predefined classes, our method uses teacher embeddings from Alpha-CLIP to guide our efficient student model DVEFormer in learning fine-grained pixel-wise embeddings. While this approach still enables classical semantic segmentation, e.g., via linear probing, it further enables flexible text-based querying and other applications, such as creating comprehensive 3D maps. Evaluations on common indoor datasets demonstrate that our approach achieves competitive performance while meeting real-time requirements, operating at 26.3 FPS for the full model and 77.0 FPS for a smaller variant on an NVIDIA Jetson AGX Orin. Additionally, we show qualitative results that highlight the effectiveness and possible use cases in real-world applications. Overall, our method serves as a drop-in replacement for traditional segmentation approaches while enabling flexible natural-language querying and seamless integration into 3D mapping pipelines for mobile robotics.